The Ricci Flow on conpact Kahher manifold Tuesday, January 12, 2016 4:13 PM
(X, g_{0}) closed Riemcinian manifold (without boundary)

$$
\left\{\begin{array}{ll}
\frac{\partial g(t)}{\partial t} & =-R_{c}(g(t)) \\
g(0) & =g_{0}
\end{array} \quad\right. \text { Rc: Rici flow }
$$

each $g(t)$ is a R-strueture
If $\operatorname{din} x \geqslant 4$, Rici flow is parrly understood.
Restrict on Kahher compent manifolel.

- X compact complex manifold
- Multiplication by $i \Rightarrow J: T X \rightarrow T X \quad J^{2}=-I d$
- $g(R$-stmutiun $)$ is Atermittion if $g(T X, T Y)=g(X, Y)$

Then $w(X, Y):=g(J X, Y)<2$-form called real $(S, 1)$-from
Oef g is Kähter if $d w=0$

- Every Reimanniea Surfare $(\operatorname{din} c=n=1)$ automatically Kätlor
- tor $C M / \Lambda \quad \Lambda=\mathbb{Z}^{2 n}$
- $\left.\mathbb{C} \mathbb{P}^{n}=\left(\mathbb{C}^{n+1}-30\right\}\right) / \mathbb{C}^{*} \quad g=$ Fubinis Stury Mefric
- complex submanifold of Kaibler are Kabler
all $X \longrightarrow \mathbb{P}^{N}$ are Kabler
(Kodaria: X compnat complex is proj $\Leftrightarrow \exists g$ Kabler X i.t $[\omega] \in H^{2}(x, Q)$
Hamiltor: $\left(x, g_{0}\right)$ upt Kähler, $\left\{\begin{array}{l}\frac{\partial g}{\partial t}=-R_{c}(g(t)) \\ g(0)=g\end{array}\right.$ has a solution $g(t)$ defieed on a meximal intersal $t \in[0, T), 0<T<\infty$ and $g(t)$ ore also Kahher.
Mrat happens at $t \rightarrow T$?
$(n=1)$ Riemann sorfaces x is differ to εg gems g
Thm (Hamiltion, Chow) . if $g \geqslant 2$, then $T=\infty$ and $\frac{g_{(4)}}{t} \xrightarrow{c^{c}} g_{u_{p p}}, R_{c}\left(g_{\psi_{r}}\right)=-g_{k_{p}}$
- if $g=1$, the $T=\infty, g(t) \xrightarrow{c^{\infty}} g_{\text {feat }}, R_{c}\left(g_{\text {let }}\right)=0$
- if $g=0$, then $T<\infty$ and $\frac{g(t)}{T-t} \xrightarrow{c^{\infty}} g_{\text {rand }}, R_{c}\left(g_{\text {raid }}\right)=g_{\text {round }}$

How about general dimensions?
(X, g) apt Killer $\rightarrow \omega$ 2-form $\rightarrow[\omega] \in H^{\prime \prime \prime}(X, R) \subset H^{2}(X, \mathbb{R})$

$$
\operatorname{Rc}(X, Y)=R_{c}(J X, J Y) \rightarrow \text { then } \operatorname{Ric}(X, Y)=\operatorname{Rc}(J X, Y) \text { closed }(1,1) \text { form }
$$

$\left[R_{i c}(g)\right]=2 \pi c_{2}(X)$ first Chern class, index of g

$$
\left.\begin{array}{rl}
K R F & \left\{\begin{array}{l}
\frac{\partial g(t)}{\partial t}=-\operatorname{Ric}(\omega(t)) \\
\omega(0)=\omega_{0}
\end{array}\right. \\
\Rightarrow \text { set }[\omega(t)]=\left[\omega_{0}\right]-2 \pi t c_{1}(x) \text { for } t<7
\end{array}\right\}
$$

K Kahber cone of X
The [Tsyji, Tian-Thay] $\left(X, g_{0}\right)$ opt Kabler, Then

$$
T=\sup \left\{t>0 \mid\left[\omega_{0}\right]-2 x+c_{1}(x) \in \zeta_{x}\right\}
$$

Hove $T=\infty \Leftrightarrow-c_{1}(x) \in \bar{C}_{x} \quad$ " K_{x} is ref" " x is a minimal model"
Case $T<\infty$ a singularity foams $C_{\text {all }} \alpha_{i}=[\omega]-2 \pi T_{c_{1}}(x) \in \partial e_{x}$
Conj (Fddman - Ilmanen - K oopf.03)"this case, tun
singularities formation set is an analytic subvariety of X then say form set $\Sigma, \Sigma^{C}=\langle x C X| \ni \cup$ open of x,

$$
\left.\begin{array}{l}
\exists \omega_{T} \quad K_{a} l_{n} \text { over } U \\
\text { st. } \quad \omega(t) \frac{C^{*}(\omega)}{t \rightarrow T} \omega_{T}
\end{array}\right\}
$$

Than (T. Collions-T.B) cory is true. $\Sigma=$ Null α) null locus of α where N all $(\alpha)=\bigcup_{V C X} V$ vaX in ed anclytio sultan

